References
1.
Eaton SB, Konner M. Paleolithic nutrition. A consideration
of its nature and current implications. N Engl J Med. 1985;312(5):283–289.
2.
Shatin R. The transition from food-gathering to food
production in evolution and disease. Vitalstoffe Zivilisationskrankheiten.
1967;12: 104–107.
3.
Abrams HL. The relevance of Paleolithic diet in
determining contemporary nutritional needs. J Appl Nutr. 1979;31:43–59.
4.
Nesse RM, Williams GC. Why we Get Sick. The New Science of
Darwinian Medicine. New York: Times
Books; 1994.
5.
Broadhurst CL. Balanced intakes of natural triglycerides
for optimum nutrition: an evolutionary and phytochemical perspective. Med Hypotheses.
1997;49(3):247–261.
6.
Mann N. Dietary lean red meat and human evolution. Eur J
Nutr. 2000; 39(2):71–79.
7.
Boaz N. Evolving Health: The Origins of Illness and How
the Modern World is Making us Sick. New York: John Wiley & Sons; 2002.
8.
Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty”
genotypes: connecting the dots toward an evolutionary understanding of modern
chronic diseases. J Appl Physiol. 2004;96(1):3–10.
9.
Halberg N, Henriksen M, Soderhamn N, et al. Effect of
intermittent fasting and refeeding on insulin action in healthy men. J Appl
Physiol. 2005;99(6):2128–2136.
10.
Gluckman P, Hanson M. Mismatch: Why Our World No Longer
Fits Our Bodies. Oxford: Oxford University Press; 2006.
11.
De Graaf C. Effects of snacks on energy intake: an
evolutionary perspective. Appetite.
2006;47(1):18–23.
12.
Halperin ML, Cheema-Dhadli S, Lin SH, Kamel KS. Control
of potassium excretion: a Paleolithic perspective. Curr Opin Nephrol Hypertens.
2006;15(4):430–436.
13.
Simopoulos AP. Evolutionary aspects of diet, the
omega-6/omega-3 ratio and genetic variation: nutritional implications for
chronic diseases. Biomed Pharmacother. 2006;60(9):502–507.
14.
Cordain L. Implications of Plio-Pleistocene hominin diets
for modern humans. In: Ungar P, editor. Evolution of the Human Diet: The Known,
the Unknown, and the Unknowable. New York: Oxford University Press;
2007:363–383.
15. Turner BL, Maes K,
Sweeney J, Armelagos GJ. Human evolution, diet, and nutrition. In: Trevathan
WR, Smith EO, McKenna JJ, editors. Evolutionary Medicine and Health: New
Perspectives. Oxford: Oxford University Press; 2008:55–71.
16. Leonard WR.
Lifestyle, diet, and disease: comparative perspectives on the determinants of
chronic health risks. In: Stearns SC, Koella JC, editors. Evolution in Health
and Disease. 2nd ed. New York: Oxford
University Press;
2008:265–276.
17. Hood E, Jenkins
KP. Evolutionary medicine: a powerful tool for improving human health. Evo Edu
Outreach. 2008;1:114–120.
18. Osterdahl M,
Kocturk T, Koochek A, Wändell PE. Effects of a short-term intervention with a
Paleolithic diet in healthy volunteers. Eur J Clin Nutr. 2008;62(5):682–685.
19. Lamon BD, Hajjar
DP. Inflammation at the molecular interface of atherogenesis: an
anthropological journey. Am J Pathol. 2008;173(5):1253–1264.
20. BMA Board of
Science. Early Life Nutrition and Lifelong Health. London: British Medical
Association; 2009.
21. Maziak W.
Point-counterpoint. The triumph of the null hypothesis:
epidemiology in an age
of change. Int J Epidemiol. 2009;38(2):393–402.
22. Pettee KK,
Ainsworth BE. The Building Healthy Lifestyles
Conference: modifying
lifestyles to enhance physical activity, diet, and reduce cardiovascular
disease. Am J Lifestyle Med. 2009; 3(1 Suppl):6s–10s.
23. Frassetto LA,
Schloetter M, Mietus-Synder M, et al. Metabolic and physiologic improvements
from consuming a paleolithic, huntergatherer type diet. Eur J Clin Nutr.
2009;63(8):947–955.
24.
Ramsden CE, Faurot KR, Carrera-Bastos P, et al. Dietary
fat quality and coronary heart disease prevention: a unified theory based on
evolutionary, historical, global, and modern perspectives. Curr Treat Options
Cardiovasc Med. 200;11(4):289–301.
25. Omenn GS.
Evolution in health and medicine Sackler colloquium: evolution and public
health. Proc Natl Acad Sci U S A. 2010;107 Suppl 1: 1702–1709.
26. Lindeberg S. Food
and Western Disease: Health and Nutrition from an Evolutionary Perspective.
Chichester, UK: Wiley-Blackwell; 2010.
27. Muskiet FAJ,
Kuipers RS. Lessons from shore-based hunter-gatherer diets in East Africa. In:
Cunnane SC, Stewart K, editors. Human Brain Evolution: The Influence of
Freshwater and Marine Food Resources. New Jersey: John Wiley & Sons;
2010:77–104.
28. Tishkoff SA,
Varkonyi R, Cahinhinan N, et al. Haplotype diversity and linkage disequilibrium
at human G6PD: recent origin of alleles that confer malarial resistance.
Science. 2001;293(5529): 455–462.
29. Moalem S, Weinberg
ED, Percy ME. Hemochromatosis and the enigma of misplaced iron: implications
for infectious disease and survival. Biometals. 2004;17(2):135–139.
30. Akey JM, Eberle
MA, Rieder MJ, et al. Population history and natural selection shape patterns
of genetic variation in 132 genes. PLoS Biol. 2004;2(10):e286.
31. Duncan SR, Scott
S, Duncan CJ. Reappraisal of the historical selective pressures for the
CCR5-Delta32 mutation. J Med Genet. 2005;42(3):205–208.
32. Armelagos GJ,
Harper KN. Genomics at the origin of agriculture,
part one. Evol Anthropol.
2005;14:68–77.
33. Wang ET, Kodama G,
Baldi P, Moyzis RK. Global landscape of recent inferred Darwinian selection for
Homo sapiens. Proc Natl Acad Sci U S A. 2006;103(1):135–40.
34. Voight BF,
Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the
human genome. PLoS Biol. 2006;4(3):e72.
35. Pollard KS, Salama
SR, Lambert N, et al. An RNA gene expressed during cortical development evolved
rapidly in humans. Nature. 2006;443(7108):167–172.
36. Hawks J, Wang ET,
Cochran GM, et al. Recent acceleration
of human adaptive evolution. Proc Natl
Acad Sci U S A. 2007;104(52): 20753–20758.
37. Hancock AM,
Witonsky DB, Gordon AS, et al. Adaptations to climate in candidate genes for
common metabolic disorders. PLoS Genet. 2008;4(2):e32.
38. Chaplin G,
Jablonski NG. Vitamin D and the evolution of human depigmentation. Am J Phys
Anthropol. 2009;139(4):451–461.
39. Yi X, Liang Y,
Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to
high altitude. Science. 2010;329(5987):75–78.
40. Richerson PJ, Boyd
R, Henrich J. Colloquium paper: gene-culture coevolution in the age of
genomics. Proc Natl Acad Sci U S A. 2010; 107 Suppl 2:8985–8992.
41. Hancock AM,
Witonsky DB, Ehler E, et al. Colloquium paper: human adaptations to diet,
subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc
Natl Acad Sci U S A. 2010;107 Suppl 2: 8924–8930.
42. Luca F, Perry GH,
Di Rienzo A. Evolutionary adaptations to dietary changes. Annu Rev Nutr.
2010;30:291–314.
43. Pritchard JK. How
we are evolving. Sci Am. 2010;303(4):40–47.
Research Reports in
Clinical Cardiology 2011:2 submit your manuscript | www.dovepress.com Dovepress
Dovepress 29 The
western diet and lifestyle
44.
Underhill PA, Shen PD, Lin AA, et al. Y chromosome
sequence variation and the history of human populations. Nat Genet. 2000;26:
358–361.
45. Tishkoff S,
Williams S. Genetic analysis of African populations: human evolution and
complex disease. Nat Rev Genet. 2002;3:611–621.
46. Conrad D, Jakobsson
M, Coop G, et al. A world-wide survey of haplotype variation and linkage
disequilibrium in the human genome. Nat Genet. 2006;38:1251–1260.
47. Cavalli-Sforza LL,
Feldman MW. The application of molecular genetic approaches to the study of
human evolution. Nat Genet. 2003;33: 266–275.
48. White TD, Asfaw B,
DeGusta D, et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature.
2003;423(6941):742–747.
49. McDougall I, Brown
FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish,
Ethiopia. Nature. 2005;433:733–736.
50. Ramachandran S,
Deshpande O, Roseman CC, et al. Support from the relationship of genetic and
geographic distance in human populations for a serial founder effect
originating in Africa. Proc Natl Acad Sci U S A. 2005;102(44):15942–15947.
51. Ray N, Currat M,
Berthier P, Excoffier L. Recovering the geographic origin of early modern
humans by realistic and spatially explicit simulations. Genome Res.
2005;15:1161–1167.
52. Liu H, Prugnolle
F, Manica A, Balloux F. A geographically explicit genetic model of worldwide
human-settlement history. Am J Hum Genet. 2006;79(2):230–237.
53. Manica A, Amos W,
Balloux F, Hanihara T. The effect of ancient population bottlenecks on human
phenotypic variation. Nature. 2007;448(7151):346–348.
54. Hudjashov G,
Kivisild T, Underhill P, et al. Revealing the prehistoric settlement of
Australia by Y chromosome and mtDNA analysis. PNAS. 2007;104:8726–8730.
55. Hellenthal G,
Auton A, Falush D. Inferring human colonization history using a copying model.
PLoS Genet. 2008;4(5):e1000078.
56. Deshpande O,
Batzoglou S, Feldman MW, Cavalli-Sforza LL. A serial founder effect model for
human settlement out of Africa. Proc Biol Sci. 2009;276(1655):291–300.
57. Campbell MC,
Tishkoff SA. The evolution of human genetic and phenotypic variation in Africa.
Curr Biol. 2010;20(4):R166–R173.
58. Jakobsson M,
Scholz SW, Scheet P, et al. Genotype, haplotype and copy-number variation in
worldwide human populations. Nature. 2008;451(7181):998–1003.
59. Green RE, Krause
J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science.
2010;328(5979):710–722.
60. Ingram CJ, Mulcare
CA, Itan Y, et al. Lactose digestion and the evolutionary genetics of lactase
persistence. Hum Genet. 2009;124(6):579–591.
61. Eaton SB,
Strassman BI, Nesse RM, et al. Evolutionary health promotion. Prev Med.
2002;34(2):109–118.
62. Muskiet FAJ.
Adaptation to the conditions of existence. Ned Tijdschr Klin Chem Labgeneesk.
2006;31:187–193.
63. Sebastian A,
Frassetto LA, Sellmeyer DE, Morris RC Jr. The
evolution-informed optimal dietary potassium intake of human beings
greatly exceeds current and recommended intakes. Semin Nephrol.
2006;26(6):447–453.
64. Eaton SB. The
ancestral human diet: what was it and should it be a paradigm for contemporary
nutrition? Proc Nutr Soc. 2006;65(1):1–6.
65. Cordain L, Eaton
SB, Sebastian A, et al. Origins and evolution of the Western diet: health
implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–354.
66. Eaton SB, Cordain
L, Lindeberg S. Evolutionary health promotion:
a consideration of
common counterarguments. Prev Med. 2002;34(2): 119–123.
67. Eaton SB, Konner
M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in
evolutionary perspective. Am J Med. 1988;84(4):739–749.
68. Lindeberg S,
Nilsson-Ehle P, Terént A, et al. Cardiovascular risk factors in a Melanesian
population apparently free from stroke and ischaemic heart disease: the Kitava
study. J Intern Med. 1994;236:331–340.
69.
Oliver WJ, Cohen EL, Neel JV. Blood pressure, sodium
intake, and sodium related hormones in the Yanomamo Indians, a “no–salt”
culture. Circulation. 1975;52(1):146–151.
70. National High
Blood Pressure Education Program. The Seventh Report of the Joint National
Committee on Prevention, Detection, Evaluation, and Treatment of High Blood
Pressure. Bethesda (MD): National Heart, Lung, and Blood Institute (US); 2004.
71. Merimee TJ, Rimoin
DL, Cavalli-Sforza LL. Metabolic studies in the African pygmy. J Clin Invest.
1972;51:395–401.
72. Kuroshima A, Itoh
S, Azuma T, Agishi Y. Glucose tolerance test in the Ainu. Int J Biometerol.
1972;16:193–197.
73. Spielmann RS,
Fajans SS, Neel JV, et al. Glucose tolerance in two unacculturated Indian
tribes of Brazil. Diabetologia. 1982;23: 90–93.
74. Lindeberg S,
Eliasson M, Lindahl B, Ahren B. Low serum insulin in traditional Pacific
Islanders: the Kitava study. Metabolism. 1999;48:1216–1219.
75. Lindgärde F, Widén
I, Gebb M, Ahrén B. Traditional versus agricultural lifestyle among Shuar women
of the Ecuadorian Amazon: effects on leptin levels. Metabolism.
2004;53(10):1355–1358.
76. Pavan L, Casiglia
E, Braga LM, et al. Effects of a traditional lifestyle on the cardiovascular
risk profile: the Amondava population of the Brazilian Amazon. Comparison with
matched African, Italian and Polish populations. J Hypertens.
1999;17(6):749–756.
77. King H, Heywood P,
Zimmet P, et al. Glucose tolerance in a highland population in Papua New
Guinea. Diabetes Res. 1984;1(1):45–51.
78. Martin FI, Wyatt
GB, Griew AR, et al. Diabetes mellitus in urban and rural communities in Papua
New Guinea. Studies of prevalence and plasma insulin. Diabetologia.
1980;18(5):369–374.
79. King H, Finch C,
Collins A, et al. Glucose tolerance in Papua New Guinea: ethnic differences,
association with environmental and behavioural factors and the possible
emergence of glucose intolerance in a highland community. Med J Aust.
1989;151(4): 204–210.
80. O’Dea K, Spargo
RM, Akerman K. The effect of transition from traditional to urban life-style on
the insulin secretory response in Australian aborigines. Diabetes Care.
1980;3(1):31–37.
81. O’Dea K. Marked
improvement in carbohydrate and lipid metabolism in diabetic Australian
aborigines after temporary reversion to traditional lifestyle. Diabetes.
1984;33(6):596–603.
82. Lindeberg S,
Soderberg S, Ahren B, Olsson T. Large differences in serum leptin levels
between non-Westernized and Westernized populations: the Kitava study. J Intern
Med. 2001;249:553–558.
83. Bribiescas RG,
Hickey MS. Population variation and differences in serum leptin independent of
adiposity: a comparison of Ache Amerindian
men of Paraguay and lean American
male distance runners. Nutr Metab (Lond). 2006;3:34.
84. World Health
Organization (WHO). Global Database on Body Mass Index.
http://www.who.int/bmi/index.jsp. Accessed October 10, 2010.
85. Cordain L, Eaton
SB, Brand Miller J, et al. An evolutionary analysis of the etiology and
pathogenesis of juvenile-onset myopia. Acta Ophthal Scand. 2002;80:125–135.
86. Agarwal SC,
Grynpas MD. Bone quantity and quality in past
populations. Anat Rec.
1996;246(4):423–432. 87. Webb S. Palaeopathology of Aboriginal Australians: Health
and Disease Across a Hunter-Gatherer Continent. Cambridge: Cambridge University
Press; 1995.
88.
Perzigian AJ. Osteoporotic bone loss in two prehistoric
Indian
populations. Am J Phys
Anthropol. 1973;39(1):87–95.
89.
Nelson DA. Bone density in three archaeological
populations. Am J Phys Anthropol. 1984;63:198.
90.
Ericksen MF. Cortical bone loss with age in three Native
American populations. Am J Phys Anthropol. 1976;45:443–452.
91.
Abbott S, Trinkaus E, Burr DB. Dynamic bone remodeling in
later Pleistocene fossil hominids. Am J Phys Anthropol. 1996;99: 585–601.
Research Reports in
Clinical Cardiology 2011:2submit your manuscript | www.dovepress.com Dovepress
Dovepress 30 Carrera-Bastos
et al
92. Ruff CB, Trinkaus
E, Walker A, Larsen CS. Postcranial robusticity in Homo. I: Temporal trends and
mechanical interpretation. Am J Phys Anthropol. 1993;91(1):21–53.
93.
Ruff CB, Trinkaus E, Holliday TW. Body mass estimation in
Olympic athletes and Pleistocene Homo. Am J Phys Anthropol. 1998;26:192–193.
94.
Ruff CB. Body mass prediction from skeletal frame size in
elite athletes. Am J Phys Anthropol. 2000;113:507–517.
95.
Trinkaus E. Appendicular robusticity and the paleobiology
of modern human emergence. Proc Natl Acad Sci U S A. 1997;94(24): 13367–13373.
96.
Kanis JA, Johnell O, De Laet C, et al. International
variations in hip fracture probabilities: implications for risk assessment. J
Bone Miner Res. 2002;17(7):1237–1244.
97.
Yoshimura N, Suzuki T, Hosoi T, Orimo H. Epidemiology of
hip fracture in Japan: incidence and risk factors. J Bone Miner Metab. 2005;23
Suppl:78–80.
98.
Palvanen M, Kannus P, Niemi S, Parkkari J. Secular trends
in the osteoporotic fractures of the distal humerus in elderly women. Eur J
Epidemiol. 1998;14(2):159–164.
99.
Barss P. Fractured hips in rural Melanesians: a
nonepidemic. Trop Geogr Med. 1985;37(2):156–159.
100. Jönsson T, Olsson
S, Ahrén B, et al. Agrarian diet and diseases of affluence: do evolutionary
novel dietary lectins cause leptin resistance? BMC Endocr Disord. 2005;5:10.
101. Arthaud JB.
Causes of death in 339 Alaskan Eskimos as determined by autopsy. Arch Pathol.
1970;90:433–438.
102. Bang HO, Dyerberg
J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv Nutr
Res. 1980;3:1–22.
103. Bjerregaard P,
Dyerberg J. Mortality from ischemic heart disease and cerebrovascular disease
in Greenland. Int J Epidemiol. 1988;17: 514–519.
104. Gottman AW. A
report of one hundred and three autopsies in Alaskan natives. Arch Pathol.
1960;70:117–124.
105. Kromann N, Green
A. Epidemiological studies in the Upernavik district, Greenland. Incidence of
some chronic diseases 1950–1974. Acta Med Scand. 1980;208:401–406.
106. Middaugh JP.
Cardiovascular deaths among Alaskan natives, 1980–86. Am J Public Health.
1990;80:282–285.
107. Young TK, Moffatt
MEK, O’Neil JD. Cardiovascular diseases in an Arctic population: an
epidemiological perspective. Am J Public Health. 1993;83:881–887.
108. Cordain L, Eaton
SB, Brand Miller J, et al. The paradoxical nature of hunter-gatherer diets:
meat based, yet non-atherogenic. Eur J Clin Nutr. 2002;56(Suppl 1):S42–S52.
109. O’Keefe JH Jr,
Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds
with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo
Clin Proc. 2004;79(1): 101–108.
110. Lindeberg S,
Berntorp E, Carlsson R, et al. Haemostatic variables in Pacific Islanders
apparently free from stroke and ischaemic heart disease. Thromb Haemost.
1997;77:94–98.
111. Lindeberg S,
Berntorp E, Nilsson-Ehle P, et al. Age relations of cardiovascular risk factors
in a traditional Melanesian society: the Kitava Study. Am J Clin Nutr.
1997;66:845–852.
112. Lindeberg S,
Lundh B. Apparent absence of stroke and ischaemic heart disease in a
traditional Melanesian Island: a clinical study in Kitava. J Intern Med.
1993;233:269–275.
113. Eaton S, Pike M,
Short R, et al. Women’s reproductive cancers in evolutionary context. Q Rev
Biol. 1994;69:353–367.
114. Capasso LL.
Antiquity of cancer. Int J Cancer. 2005;113(1): 2–13.
115. Bulkley JL.
Cancer among primitive tribes. Cancer. 1927;4(4): 289–295.
116. Riveros M. First
observation of cancer among the Pampido Indians of the Paraguayan Chaco. Int
Surg. 1970;53(1):51–55.
117. Hearsey H. The
rarity of cancer among the aborigines of British Central Africa. Br Med J.
1906;1562–1563.
118. Dewailly E,
Mulvad G, Sloth Pedersen H, et al. Inuit are protected against prostate cancer.
Cancer Epidemiol Biomarkers Prev. 2003;12(9):926–927.
119. Cordain L,
Lindeberg S, Hurtado M, et al. Acne vulgaris: a disease of Western
civilization. Arch Dermatol. 2002;138:1584–1590.
120. Narayan KM, Boyle
JP, Geiss LS, et al. Impact of recent increase in incidence on future diabetes
burden: US, 2005–2050. Diabetes Care. 2006;29(9):2114–2116.
121. Ruffer M. On
arterial lesions found in Egyptian mummies. J Pathol Bacteriol.
1911;15:453–462.
122. Bruetsch WL. The
earliest record of sudden death possibly due to atherosclerotic coronary
occlusion. Circulation. 1959;20:438–441.
123. Cockburn A,
Barraco RA, Reyman TA, Peck WH. Autopsy of an Egyptian mummy. Science.
1975;187:1155–1160.
124. Pollard TM.
Western Diseases: An Evolutionary Perspective.
Cambridge: Cambridge
University Press; 2008.
125. Schaeffer O. When
the Eskimo comes to town. Nutr Today. 1971;6: 8–16.
126. O’Dea K, Patel M,
Kubisch D, et al. Obesity, diabetes and hyperlipidaemia in a Central Australia
Aboriginal community with a long history of acculturation. Diabetes Care.
1993;16:1004–1010.
127. Dowse GK, Spark
RA, Mavo B, Hodge AM. Extraordinary prevalence of non-insulin-dependent
diabetes mellitus and bimodal plasma glucose distribution in the Wanigela
people of Papua New Guinea. Med J Aust. 1994;160:767–774.
128. Szathmary EJE.
Non-insulin dependent diabetes mellitus among aboriginal North Americans. Annu
Rev Anthropol. 1994;23:457–482.
129. Hodge AM, Dowse
GK, Koki G, et al. Modernity and obesity in coastal and Highland Papua New
Guinea. Int J Obes Relat Metab Disord. 1995;19(3):154–161.
130. Ebbesson SO,
Schraer CD, Risica PM, et al. Diabetes and impaired glucose tolerance in three
Alaskan Eskimo populations: the AlaskaSiberia Project. Diabetes Care.
1998;21:563–569.
131. Daniel M, Rowley
KG, McDermott R, et al. Diabetes incidence in an Australian aboriginal
population: an 8-year follow-up study. Diabetes Care. 1999;22:1993–1998.
132. Cockram CS.
Diabetes mellitus: perspective from the Asia-Pacific region. Diabetes Res Clin
Pract. 2000;50(Suppl 2):S3–S7.
133. Kaler SN,
Ralph-Campbell K, Pohar S, et al. High rates of the metabolic syndrome in a
First Nations Community in Western Canada: prevalence and determinants in
adults and children. Int J Circumpolar Health. 2006;65(5):389–402.
134. Yu CH, Zinman B.
Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a
global perspective. Diabetes Res Clin Pract. 2007;78(2):159–170.
135. Johnson RJ,
Perez-Pozo SE, Sautin YY, et al. Hypothesis: could excessive fructose intake
and uric acid cause type 2 diabetes? Endocr Rev. 2009;30(1):96–116.
136. Ebbesson SO,
Adler AI, Risica PM, et al. Cardiovascular disease and risk factors in three
Laskan Eskimo populations: the Alaska-Siberia project. Int J Circumpolar
Health. 2005;64(4):365–386.
137. Renner W. The
spread of cancer among the descendents of the liberated Africans or Creoles of
Serra Leona. Br Med J. 1910:587–589.
138. Day G, Lanier A.
Alaska native mortality, 1979–1998. Public Health Rep. 2003;118:518–530.
139. Valway S. Cancer
Mortality Among Native Americans in the United States: Regional Differences in
Indian Health 1984–1988 and Trends Over Time. Rockville, MD: Indian Health
Service; 1992.
140. Baquet C. Native
Americans’ cancer rates in comparison with other peoples of color. Cancer.
1996;78:1538–1544.
141. Lanier A. Cancer
incidence in Alaska natives: comparison of two time periods, 1989–93 vs
1969–73. Cancer Suppl. 1998;83:1815–1817.
142. Lanier A, Jones
D. Existence of Alaska native health disparities. Am J Public Health.
2007;97(9):1541–1542.
143. Louchini R, Beaupré
M. Cancer incidence and mortality among aboriginal people living on reserves
and northern villages in Québec, 1988–2004. Int J Circumpolar Health.
2008;67(5):445–451.
Research Reports in
Clinical Cardiology 2011:2 submit your manuscript | www.dovepress.com Dovepress
Dovepress 31 The
western diet and lifestyle
144. Hildes JA,
Schaefer O. The changing picture of neoplastic disease in the Western and
Central Canadian Arctic (1950–1980). Can Med Assoc J. 1984;130:25–32.
145. Robinson EJ,
Gebre Y, Pickering JL, et al. Effect of bush living on aboriginal Canadians of
the Eastern James Bay region with
non-insulin-dependent
diabetes mellitus. Chronic Dis Can. 1995;16: 144–148.
146. Booth FW,
Chakravarthy MV, Gordon SE, Spangenburg EE.
Waging war on physical inactivity: using modern molecular ammunition
against an ancient enemy. J Appl Physiol. 2002;93(1):3–30.
147. Booth FW, Lees
SJ. Fundamental questions about genes, inactivity, and chronic diseases.
Physiol Genomics. 2007;28(2):146–157.
148. Booth FW, Laye
MJ. The future: genes, physical activity and health. Acta Physiol (Oxf).
2010;199(4):549–556.
149. Gurven M, Kaplan
H. Longevity among hunter-gatherers: a crosscultural examination. Popul Dev
Rev. 2007;33:321–365.
150. Angel LJ. Health
as a crucial factor in the changes from hunting to developed farming in the
eastern Mediterranean. In: Cohen MN, Armelagos GJ, editors. Paleopathology at
the Origins of Agriculture. Orlando: Academic Press; 1984:51–73.
151. Vieth R. What is
the optimal vitamin D status for health? Prog Biophys Mol Biol.
2006;92(1):26–32.
152. Wiley TS, Formby
B. Lights Out: Sleep, Sugar and Survival. New York: Pocket Books; 2000.
153. Cordain L,
Gotshall RW, Eaton SB, Eaton SB 3rd. Physical activity, energy expenditure and
fitness: an evolutionary perspective. Int J Sports Med. 1998;19(5):328–335.
154. Cordain L. Cereal
grains: humanity’s double-edged sword. World Rev Nutr Diet. 1999;84:19–73.
155. Cordain L, Brand
Miller J, Eaton SB, et al. Plant to animal subsistence ratios and macronutrient
energy estimations in world wide huntergatherer diets. Am J Clin Nutr.
2000;71:682–692.
156. Cordain L.
Saturated fat consumption in ancestral human diets: implications for
contemporary intakes. In: Meskin MS, Bidlack WR, Randolph RK, editors.
Phytochemicals, Nutrient-Gene Interactions. Boca Raton, FL: CRC Press;
2006:115–126.
157. Kuipers RS,
Luxwolda MF, Janneke Dijck-Brouwer DA, et al. Estimated macronutrient and fatty
acid intakes from an East African Paleolithic diet. Br J Nutr. 2010:1–22.
158. Deutch B,
Dyerberg J, Pedersen HS, et al. Traditional and modern Greenlandic food:
dietary composition, nutrients and contaminants. Sci Total Environ. 2007;384(1–3):106–119.
159. Kuhnlein HV,
Receveur O. Local cultural animal food contributes high levels of nutrients for
Arctic Canadian indigenous adults and children. J Nutr. 2007;137(4):1110–1114.
160. Rook GA. 99th
Dahlem conference on infection, inflammation and chronic inflammatory
disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis.
Clin Exp Immunol. 2010;160(1):70–79.
161. Black PH. The
inflammatory response is an integral part of the stress response: implications
for atherosclerosis, insulin resistance, type II diabetes and metabolic
syndrome X. Brain Behav Immun. 2003;17(5): 350–364.
162. Mills NL,
Donaldson K, Hadoke PW, et al. Adverse cardiovascular effects of air pollution.
Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44.
163. Vardavas CI,
Panagiotakos DB. The causal relationship between passive smoking and
inflammation on the development of cardiovascular disease: a review of the
evidence. Inflamm Allergy Drug Targets. 2009;8(5):328–333.
164. S Tilg H, Moschen
AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med.
2008;14(3–4):222–231.
165. Kolb H,
Mandrup-Poulsen T. The global diabetes epidemic as a consequence of
lifestyle-induced low-grade inflammation. Diabetologia. 2010;53(1):10–20.
166. Hanson GK.
Inflammation, atherosclerosis and coronary artery disease. N Engl J Med.
2005;352:1658–1695.
167. Cashman KD.
Altered bone metabolism in inflammatory disease: role for nutrition. Proc Nutr
Soc. 2008;67(2):196–205.
168. Soto AM,
Sonnenschein C. Environmental causes of cancer: endocrine disruptors as
carcinogens. Nat Rev Endocrinol. 2010;6(7):363–370.
169. Nadal A,
Alonso-Magdalena P, Soriano S, et al. The pancreatic beta-cell as a target of
estrogens and xenoestrogens: implications for blood glucose homeostasis and
diabetes. Mol Cell Endocrinol. 2009;304(1–2):63–68.
170. Lang IA, Galloway
TS, Scarlett A, et al. Association of urinary bisphenol A concentration with
medical disorders and laboratory abnormalities in adults. JAMA.
2008;300(11):1303–1310.
171. Grün F, Blumberg
B. Endocrine disrupters as obesogens. Mol Cell Endocrinol. 2009;304(1–2):19–29.
172. Melzer D, Rice
NE, Lewis C, et al. Association of urinary bisphenol a concentration with heart
disease: evidence from NHANES 2003/06. PLoS One. 2010;5(1):e8673.
173. Vgontzas AN,
Zoumakis E, Bixler EO, et al. Adverse effects of modest sleep restriction on
sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab.
2004;89:2119–2126.
174. Tasali E,
Leproult R, Spiegel K. Reduced sleep duration or quality: relationships with
insulin
resistance and type 2 diabetes. Prog
Cardiovasc Dis.
2009;51:381–391.
175. Krueger PM,
Friedman EM. Sleep duration in the United States: a cross-sectional
population-based study. Am J Epidemiol. 2009;169(9): 1052–1063.
176. Haus E, Smolensky
M. Biological clocks and shift work: circadian dysregulation and potential
long-term effects. Cancer Causes Control. 2006 May;17(4):489–500.
177. Holick MF.
Vitamin D deficiency. N Engl J Med. 2007;357(3): 266–281.
178. Lee JH, O’Keefe
JH, Bell D, et al. Vitamin D deficiency an important, common, and easily
treatable cardiovascular risk factor? J Am Coll Cardiol. 2008;52(24):1949–1956.
179. Grant WB. In
defense of the sun: an estimate of changes in mortality rates in the United
States if mean serum 25-hydroxyvitamin D levels were raised to 45 ng/mL by
solar ultraviolet-B irradiance.
Dermatoendocrinol.
2009;1(4):207–214.
180. Bohn T, Davidsson
L, Walczyk T, Hurrell RF. Phytic acid added to white-wheat bread inhibits
fractional apparent magnesium absorption in humans. Am J Clin Nutr.
2004;79(3):418–423.
181. Hallberg L,
Rossander-Hultén L, Brune M, Gleerup A. Calcium and iron absorption: mechanism
of action and nutritional importance. Eur J Clin Nutr. 1992;46(5):317–327.
182. Shambaugh GE Jr.
Zinc: the neglected nutrient. Am J Otol. 1989;10(2):156–160.
183. Miron W,
Sobaniec-Lotowska M, Sulkowski S. [Malignant neoplasms in autopsy specimens and
the magnesium level in the soil of the communities of Grodek and Tykocin]. Wiad
Lek. 1989;42(19–21): 1033–1037.
184. Clark LC, Cantor
KP, Allaway WH. Selenium in forage crops and cancer mortality in US counties.
Arch Environ Health. 1991;46(1): 37–42.
185. Maksimovic Z,
Rsumovic M, Jovic V, et al. Selenium in soil, grass, and human serum in the
Zlatibor mountain area (Serbia): geomedical aspects. J Environ Pathol Toxicol
Oncol. 1998;17(3–4):221–227.
186. Fan MS, Zhao FJ,
Fairweather-Tait SJ, et al. Evidence of decreasing mineral density in wheat
grain over the last 160 years. J Trace Elem Med Biol. 2008;22(4):315–324.
187. Sweeney JP, Marsh
AC. Effect of processing on provitamin A in vegetables. J Am Diet Assoc.
1971;59(3):238–243.
188. Carlson BL,
Tabacchi MH. Loss of vitamin C in vegetables during the food service cycle. J
Am Diet Assoc. 1988;88:65–67.
189. Kmiecik W,
Lisiewska Z. Effect of the variety and size of fresh and frozen brussels
sprouts on the vitamin C level. Rocz Panstw Zakl Hig. 1989;40(3):215–222.
190. Moshfegh A,
Goldman J, Cleveland L. What We Eat in America, NHANES 2001–2002: Usual
Nutrient Intakes From Food Compared to Dietary Reference Intakes. Washington,
DC: Department of
Agriculture
Agricultural Research Service (US); 2005.
Research Reports in
Clinical Cardiology 2011:2submit your manuscript | www.dovepress.com Dovepress Carrera-Bastos
et al Dovepress 32
191.
Kant AK. Consumption of energy-dense, nutrient-poor
foods by adult Americans: nutritional and health implications. The Third
National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr.
2000;72(4):929–936.
192. Rumm-Kreuter D,
Demmel I. Comparison of vitamin losses in vegetables due to various cooking
methods. J Nutr Sci Vitaminol (Tokyo). 1990;36 Suppl 1:S7–S14.
193. Kimura M, Itokawa
Y. Cooking losses of minerals in foods and its nutritional significance. J Nutr
Sci Vitaminol (Tokyo). 1990;36 Suppl 1:S25–S32.
194. Nursal B, Yücecan
S. Vitamin C losses in some frozen vegetables due to various cooking methods.
Nahrung. 2000;44(6):451–453.
195. McKillop DJ, Pentieva
K, Daly D, et al. The effect of different cooking methods on folate retention
in various foods that are amongst the major contributors to folate intake in
the UK diet. Br J Nutr. 2002;88(6): 681–688.
196. Agte V, Tarwadi
K, Mengale S, et al. Vitamin profile of cooked foods: how healthy is the
practice of ready-to-eat foods? Int J Food Sci Nutr. 2002;53(3):197–208.
197. Jiménez-Monreal
AM, García-Diz L, Martínez-Tomé M, et al. Influence of cooking methods on
antioxidant activity of vegetables. J Food Sci. 2009;74(3):H97–H103.
198. Lykkesfeldt J,
Christen S, Wallock LM, et al. Ascorbate is depleted by smoking and repleted by
moderate supplementation: a study in male smokers and nonsmokers with matched
dietary antioxidant intakes. Am J Clin Nutr. 2000;71(2):530–536.
199. Ames BN. Low
micronutrient intake may accelerate the degenerative diseases of aging through
allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A.
2006;103(47):17589–17594.
200. McCann JC, Ames
BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked
to diseases of aging? Am J Clin Nutr. 2009;90(4):889–907.
201. He K, Song Y,
Belin RJ, Chen Y. Magnesium intake and the metabolic syndrome: epidemiologic
evidence to date. J Cardiometab Syndr. 2006;1(5):351–355.
202. Ford ES, Li C,
McGuire LC, et al. Intake of dietary magnesium and the prevalence of the
metabolic syndrome among US adults. Obesity (Silver Spring).
2007;15(5):1139–1146.
203. Rylander R.
Environmental magnesium deficiency as a cardiovascular risk factor. J
Cardiovasc Risk. 1996;3:4–10.
204. Rubenowitz E,
Molin I, Axelsson G, Rylander R. Magnesium in drinking water in relation to
morbidity and mortality from acute myocardial infarction. Epidemiology.
2000;11:416–421.
205. Al-Delaimy WK,
Rimm EB, Willett WC, et al. Magnesium intake and risk of coronary heart disease
among men. J Am Coll Nutr. 2004;23(1): 63–70.
206. Nielsen FH, Milne
DB, Klevay LM, et al. Dietary magnesium deficiency induces heart rhythm
changes, impairs glucose tolerance, and decreases serum cholesterol in post
menopausal women. J Am Coll Nutr. 2007;26(2):121–132.
207. Rosanoff A.
Magnesium supplements may enhance the effect of antihypertensive medications in
stage 1 hypertensive subjects. Magnes Res. 2010;23(1):27–40.
208. Hatzistavri LS,
Sarafidis PA, Georgianos PI, et al. Oral magnesium supplementation reduces
ambulatory blood pressure in patients with mild hypertension. Am J Hypertens.
2009;22(10): 1070–1075.
209. Hadjistavri LS,
Sarafidis PA, Georgianos PI, et al. Beneficial effects of oral magnesium
supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit.
2010;16(6):CR307–CR312.
210. Geleijnse JM,
Vermeer C, Grobbee DE, et al. Dietary intake of menaquinone is associated with
a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr.
2004;134(11):3100–3105.
211. Gast GC, de Roos
NM, Sluijs I, et al. A high menaquinone intake reduces the incidence of
coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504–510.
212.
Beulens JW, Bots ML, Atsma F. High dietary menaquinone
intake is associated with reduced coronary calcification. Atherosclerosis.
2009;203(2):489–493.
213. Corwin EJ. The
concept of epigenetics and its role in the development of cardiovascular disease:
commentary on “new and emerging theories of cardiovascular disease”. Biol Res
Nurs. 2004;6(1):11–16.
214. Matouk CC,
Marsden PA. Epigenetic regulation of vascular endothelial gene expression. Circ
Res. 2008;102:873–887.
215. Frassetto L,
Morris RC Jr, Sellmeyer DE, et al. Diet, evolution and aging: the
pathophysiologic effects of the post-agricultural inversion of the
potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr.
2001;40(5):200–213.
216. Ströhle A, Hahn
A, Sebastian A. Latitude, local ecology, and huntergatherer dietary acid load:
implications from evolutionary ecology. Am J Clin Nutr. 2010;92(4):940–945.
217. Jajoo R, Song L,
Rasmussen H, et al. Dietary acid-base balance, bone resorption, and calcium
excretion. J Am Coll Nutr. 2006;25(3): 224–230.
218. Rylander R, Remer
T, Berkemeyer S, Vormann J. Acid-base status affects renal magnesium losses in
healthy, elderly persons. J Nutr. 2006;136(9):2374–2377.
219. Frassetto LA,
Morris RC Jr, Sebastian A. Dietary sodium chloride intake independently
predicts the degree of hyperchloremic metabolic acidosis in healthy humans
consuming a net acid-producing diet. Am J Physiol Renal Physiol.
2007;293(2):F521–F525.
220. Cani PD, Bibiloni
R, Knauf C, et al. Changes in gut microbiota control metabolic
endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes
in mice. Diabetes. 2008;57(6): 1470–1481.
221. Cordain L, Toohey
L, Smith MJ, Hickey MS. Modulation of immune function by dietary lectins in
rheumatoid arthritis. Br J Nutr. 2000;83(3):207–217.
222. Erridge C, Attina
T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia:
evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr.
2007;86(5):1286–1292.
223. Creely SJ, McTernan
PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system
response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol
Endocrinol Metab. 2007;292(3):E740–E747.
224. Monaco C,
Paleolog E. Nuclear factor kappaB: a potential therapeutic target in
atherosclerosis and thrombosis. Cardiovasc Res. 2004;61(4):671–682.
225. Hotamisligil GS.
Inflammation and metabolic disorders. Nature. 2006;444(7121):860–867.
226. Deopurkar R,
Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange
juice on inflammation, endotoxin, and the expression of Toll-like receptor-4
and suppressor of cytokine signalling-3. Diabetes Care. 2010;33(5):991–997.
227. Ghanim H,
Abuaysheh S, Sia CL, et al. Increase in plasma endotoxin concentrations and the
expression of Toll-like receptors and suppressor of cytokine signalling-3 in
mononuclear cells after a high-fat, highcarbohydrate meal: implications for
insulin resistance. Diabetes Care. 2009;32(12):2281–2287.
228. Ghanim H, Sia CL,
Upadhyay M, et al. Orange juice neutralizes the proinflammatory effect of a
high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like
receptor expression. Am J Clin Nutr. 2010;91(4):940–949.
229. Purohit V, Bode
JC, Bode C, et al. Alcohol, intestinal bacterial growth, intestinal
permeability to endotoxin, and medical consequences: summary of a symposium.
Alcohol. 2008;42(5):349–361.
230. Patel B, Schutte
R, Sporns P, et al. Potato glycoalkaloids adversely affect intestinal permeability
and aggravate inflammatory bowel disease. Inflamm Bowel Dis. 2002;8(5):340–346.
231. Keukens EA, de
Vrije T, van den Boom C, et al. Molecular basis of glycoalkaloid induced
membrane disruption. Biochim Biophys Acta. 1995;1240(2):216–228.
Research Reports in
Clinical Cardiology 2011:2 submit your manuscript | www.dovepress.com Dovepress
Dovepress 33 The
western diet and lifestyle
232. Gee JM, Wortley
GM, Johnson IT, et al. Effects of saponins and glycoalkaloids on the
permeability and viability of mammalian intestinal cells and on the integrity
of tissue preparations in vitro. Toxicol In Vitro. 1996;10(2):117–128.
233. Alvarez JR,
Torres-Pinedo R. Interactions of soybean lectin, soyasaponins, and glycinin
with rabbit jejunal mucosa in vitro. Pediatr Res. 1982;16(9):728–731.
234. Chao AC, Nguyen
JV, Broughall M, et al. Enhancement of intestinal model compound transport by
DS-1, a modified Quillaja saponin. J Pharm Sci. 1998;87(11):1395–1399.
235. Story JA, LePage
SL, Petro MS, et al. Interactions of alfalfa plant and sprout saponins with
cholesterol in vitro and in cholesterol-fed rats. Am J Clin Nutr. 1984;39(6):917–929.
236. Drago S, El Asmar
R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: effects on celiac
and non-celiac intestinal mucosa and intestinal cell lines. Scand J
Gastroenterol. 2006;41(4):408–419.
237. Visser J, Rozing
J, Sapone A, et al. Tight junctions, intestinal permeability, and autoimmunity:
celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci.
2009;1165:195–205.
238. Bernardo D,
Garrote JA, Fernández-Salazar L, et al. Is gliadin really safe for non-coeliac
individuals? Production of interleukin 15 in biopsy culture from non-coeliac
individuals challenged with gliadin peptides. Gut. 2007;56(6):889–890.
239. Rakhimova M,
Esslinger B, Schulze-Krebs A, et al. In vitro differentiation of human
monocytes into dendritic cells by peptic-tryptic digest of gliadin is
independent of genetic predisposition and the presence of celiac disease. J
Clin Immunol. 2009;29(1):29–37.
240. Doherty M, Barry
RE. Gluten-induced mucosal changes in subjects without overt small-bowel
disease. Lancet. 1981;1(8219):517–520.
241. Reichelt KL,
Jensen D. IgA antibodies against gliadin and gluten in multiple sclerosis. Acta
Neurol Scand. 2004;110(4):239–241.
242. Pengiran Tengah
CD, Lock RJ, Unsworth DJ, Wills AJ. Multiple sclerosis and occult gluten sensitivity.
Neurology. 2004;62(12):2326–2327.
243. Barbeau WE,
Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together: a
series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Med
Hypotheses. 2007;68(3):607–619.
244. Michaëlsson G,
Gerdén B, Hagforsen E, et al. Psoriasis patients with antibodies to gliadin can
be improved by a gluten-free diet. Br J Dermatol. 2000;142(1):44–51.
245. Lidén M,
Kristjánsson G, Valtýsdóttir S, Hällgren R. Gluten sensitivity in patients with
primary Sjögren’s syndrome. Scand J Gastroenterol. 2007;42(8):962–967.
246. Elkan AC, Sjöberg
B, Kolsrud B, et al. Gluten-free vegan diet induces decreased LDL and oxidized
LDL levels and raised atheroprotective natural antibodies against phosphorylcholine
in patients with rheumatoid arthritis: a randomized study. Arthritis Res Ther.
2008;10(2):R34.
247. De Faire U,
Frostegĺrd J. Natural antibodies against phosphorylcholine in cardiovascular
disease. Ann N Y Acad Sci. 2009;1173: 292–300.
248. Frostegĺrd J, Tao
W, Georgiades A, et al. Atheroprotective natural anti-phosphorylcholine
antibodies of IgM subclass are decreased in Swedish controls as compared to
non-Westernized individuals from New Guinea. Nutr Metab (Lond). 2007;4:7.
249. Kilpatrick DC, Pusztai
A, Grant G, et al. Tomato lectin resists digestion in the mammalian alimentary
canal and binds to intestinal villi without deleterious effects. FEBS Lett.
1985;185(2):299–305.
250. Grant G, More LJ,
McKenzie NH, Pusztai A. The effect of heating on the haemagglutinating activity
and nutritional properties of bean
(Phaseolus vulgaris)
seeds. J Sci Food Agric. 1982;33(12): 1324–1326.
251. Wang Q, Yu LG,
Campbell BJ, et al. Identification of intact peanut lectin in peripheral venous
blood. Lancet. 1998;352(9143):1831–1832.
252. Kamikubo Y,
Dellas C, Loskutoff DJ, et al. Contribution of leptin receptor N-linked glycans
to leptin binding. Biochem J. 2008;410(3): 595–604.
253. Muraille E, Pajak
B, Urbain J, Leo O. Carbohydrate-bearing cell surface receptors involved in
innate immunity: interleukin-12 induction by mitogenic and nonmitogenic
lectins. Cell Immunol. 1999;191(1):1–9.
254. Sodhi A,
Kesherwani V. Production of TNF-alpha, IL-1beta, IL-12 and IFN-gamma in murine
peritoneal macrophages on treatment with wheat germ agglutinin in vitro:
involvement of tyrosine kinase pathways. Glycoconj J. 2007;24(9):573–582.
255. Saja K,
Chatterjee U, Chatterjee BP, Sudhakaran PR. Activation dependent expression of
MMPs in peripheral blood mononuclear cells involves protein kinase A. Mol Cell
Biochem. 2007;296(1–2): 185–192.
256. Dubois B, Peumans
WJ, Van Damme EJ, et al. Regulation of gelatinase B (MMP-9) in leukocytes by
plant lectins. FEBS Lett. 1998; 427(2):275–278.
257. Ohmori T, Yatomi
Y, Wu Y, et al. Wheat germ agglutinin-induced platelet activation via platelet
endothelial cell adhesion molecule-1: involvement of rapid phospholipase C
gamma 2 activation by Src family kinases. Biochemistry.
2001;40(43):12992–13001.
258. Cordain L.
Atherogenic potential of peanut oil-based monounsaturated fatty acids diets.
Lipids. 1998;33(2):229–230.
259. Burr ML, Fehily
AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on
death and myocardial reinfarction: Diet And Reinfarction Trial (DART) [see comments].
Lancet. 1989;2:757–761.
260. Ness AR, Hughes
J, Elwood PC, et al. The long-term effect of dietary advice in men with
coronary disease: follow-up of the Diet And Reinfarction Trial (DART). Eur J
Clin Nutr. 2002;56(6):512–518.
261. Kanková K.
Diabetic threesome (hyperglycaemia, renal function and nutrition) and advanced
glycation end products: evidence for the multiple-hit agent? Proc Nutr Soc.
2008;67(1):60–74.
262. Peppa M, Raptis
SA. Advanced glycation end products and cardiovascular disease. Curr Diabetes
Rev. 2008;4(2):92–100.
263. Uribarri J, Cai
W, Peppa M, et al. Circulating glycotoxins and dietary advanced glycation
endproducts: two links to inflammatory response, oxidative stress, and aging. J
Gerontol A Biol Sci Med Sci. 2007;62(4): 427–433.
264. Uribarri J,
Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a
practical guide to their reduction in the diet. J Am Diet Assoc.
2010;110(6):911–916.e12.
265. Cerami C, Founds
H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation
products. Proc Natl Acad Sci U S A. 1997;94: 13915–13920.
266. Cordain L, Eades
MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just
Syndrome X. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):95–112.
267. Reaven GM. The
insulin resistance syndrome: definition and dietary approaches to treatment.
Annu Rev Nutr. 2005;25:391–406.
268. Roberts CK, Liu
S. Effects of glycemic load on metabolic health and type 2 diabetes mellitus. J
Diabetes Sci Technol. 2009;3(4):697–704.
269. Brand-Miller J,
Dickinson S, Barclay A, Allman-Farinelli M. Glycemic index, glycemic load, and
thrombogenesis. Semin Thromb Hemost. 2009;35(1):111–118.
270. Barclay AW,
Petocz P, McMillan-Price J, et al. Glycemic index, glycemic load, and chronic
disease risk: a meta-analysis of observational studies. Am J Clin Nutr.
2008;87(3):627–637.
271. Larsen TM,
Dalskov SM, van Baak M, et al. Diets with high or low protein content and
glycemic index for weight-loss maintenance. N Engl J Med.
2010;363(22):2102–2113.
272. Thomas DE,
Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for
overweight and obesity. Cochrane Database Syst Rev. 2007;3:CD005105.
273. Melnik BC,
Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food
and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol.
2009;18(10):833–841.
274. Alas-Salvadó J,
Farrés X, Luque X, et al. Effect of two doses of a mixture of soluble fibres on
body weight and metabolic variables in overweight or obese patients: a
randomised trial. Br J Nutr. 2008;99(6): 1380–1387.
Research Reports in
Clinical Cardiology 2011:2submit your manuscript | www.dovepress.com
Dovepress Dovepress 34
275.
Tarini J, Wolever TM. The fermentable fibre insulin
increases postprandial serum short-chain fatty acids and reduces freefatty
acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab.
2010;35(1):9–16.
276. Higginson J,
Oettlé AG. Cancer incidence in the Bantu and “Cape Colored” races of South
Africa: report of a cancer survey in the Transvaal (1953–1955). J Natl Cancer
Inst. 1960;24:589–671.
277. Calder JF,
Wachira MW, Van Sant T, et al. Diverticular disease, carcinoma of the colon and
diet in urban and rural Kenyan Africans. Diagn Imaging Clin Med. 1980;42:23–28.
278. Mitchell BL,
Lawson MJ, Davies M, et al. Volatile fatty acids in the human intestine:
studies in surgical patients. Nutr Res. 1985;5: 1089–1092.
279. Singh N. Blockade
of dendritic cell development by bacterial fermentation products butyrate and
propionate through a transporter (Slc5a8)-dependent inhibition of histone
deacetylases. J Biol Chem. 2010;285(36):27601–27608.
280. Peng L, Li ZR,
Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight
junction assembly via activation of AMPactivated protein kinase in Caco–2 cell
monolayers. J Nutr. 2009;139: 1619–1625.
281. Lewis K,
Lutgendorff F, Phan V, et al. Enhanced translocation of bacteria across
metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis.
2010;16(7):1138–1148.
282. Johnson RJ, Segal
MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of
hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and
cardiovascular disease. Am J Clin Nutr. 2007;86(4):899–906.
283. Ouyang X, Cirillo
P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic
fatty liver disease. J Hepatol. 2008;48(6): 993–999.
284. Holt SH, Miller
JC, Petocz P. An insulin index of foods: the insulin demand generated by
1000-kJ portions of common foods. Am J Clin Nutr. 1997;66(5):1264–1276.
285. Ostman EM,
Liljeberg Elmstĺhl HG, Björck IM. Inconsistency between glycemic and
insulinemic responses to regular and fermented milk products. Am J Clin Nutr.
2001;74:96–100.
286. Liljeberg
Elmstahl H, Bjorck I. Milk as a supplement to mixed meals may elevate
postprandial insulinaemia. Eur J Clin Nutr. 2001;55: 994–999.
287. Hoyt G, Hickey
MS, Cordain L. Dissociation of the glycaemic and insulinaemic responses to
whole and skimmed milk. Br J Nutr. 2005;93(2):175–177.
288. Hoppe C, Mřlgaard
C, Vaag A, et al. High intakes of milk, but not meat increases insulin and
insulin resistance in 8-year-old boys. Eur J Clin Nutr. 2005;59(3):393–398.
289. Pereira MA,
Jacobs DR Jr, Van Horn L, et al. Dairy consumption, obesity, and the insulin
resistance syndrome in young adults: the CARDIA study. JAMA.
2002;287(16):2081–2089.
290. Azadbakht L,
Mirmiran P, Esmaillzadeh A, Azizi F. Dairy consumption is inversely associated
with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin
Nutr. 2005;82(3):523–530.
291. Liu S, Song Y,
Ford ES, et al. Dietary calcium, vitamin D, and the prevalence of metabolic
syndrome in middle-aged and older US women. Diabetes Care.
2005;28(12):2926–2932.
292. Lawlor DA,
Ebrahim S, Timpson N, Davey Smith G. Avoiding milk is associated with a reduced
risk of insulin resistance and the metabolic syndrome: findings from the
British Women’s Heart and Health Study. Diabet Med. 2005;22(6):808–811.
293. Almon R,
Alvarez-Leon EE, Engfeldt P, et al. Associations between lactase persistence
and the metabolic syndrome in a cross-sectional study in the Canary Islands.
Eur J Nutr. 2010;49(3):141–146.
294. Ma B, Lawson AB,
Liese AD, et al. Dairy, magnesium, and calcium intake in relation to insulin
sensitivity: approaches to modeling a dosedependent association. Am J
Epidemiol. 2006;164(5):449–458.
295. Melnik BC. Milk:
the promoter of chronic Western diseases. Med Hypotheses. 2009;72(6):631–639.
296.
Aranda P, Sanchez L, Perez MD, et al. Insulin in bovine
colostrum and milk: evolution throughout lactation and binding to caseins. J
Dairy Sci. 1991;74(12):4320–4325.
297. Collier RJ,
Miller MA, Hildebrandt JR, et al. Factors affecting insulin-like growth
factor-I concentration in bovine milk. J Dairy Sci. 1991;74: 2905–2911.
298. Bastian SE, Tao
W, Georgiades A, et al. Measurement of betacellulin levels in bovine serum,
colostrum and milk. J Endocrinol. 2001;168(1): 203–212.
299. Farlow DW, Xu X,
Veenstra TD. Quantitative measurement of endogenous estrogen metabolites, risk
factors for development of breast cancer, in commercial milk products by
LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):
1327–1334.
300. Danby FW. Acne,
dairy and cancer: the 5alpha-P link.
Dermatoendocrinol. 2009;1(1):12–16.
301. Kirkwood TB.
Understanding ageing from an evolutionary perspective. J Intern Med. 2008
Feb;263(2):117–127.
302. Bunn HF, Higgins
PJ. Reaction of monosaccharides with proteins: possible evolutionary
significance. Science. 1981;213:222–2224.
303. Takeuchi M, Iwaki
M, Takino J, et al. Immunological detection of fructose-derived advanced
glycation end-products. Lab Invest. 2010;90(7):1117–1127.
304. National Academy
of Sciences. Dietary Reference Intakes: The Essential Guide to Nutrient
Requirements. 1st ed. Washington, DC: National Academy Press; 2006.
305. Campbell B,
Kreider RB, Ziegenfuss T, et al. International Society of Sports Nutrition
position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8.
306. Dreyer HC, Volpi
E. Role of protein and amino acids in the pathophysiology and treatment of
sarcopenia. J Am Coll Nutr. 2005;24(2):140S–145S.
307. Kerstetter JE,
Gaffney ED, O’Brien O. Dietary protein increases intestinal calcium absorption
and improves bone balance: an hypothesis. In: Burckhardt P, Heaney R,
Dawson-Hughes B, editors. Proceedings of the International Symposium on
Nutritional Aspects of Osteoporosis, May 4–6, 2006. Lausanne, Switzerland.
Elsevier; 2007:204–216.
308. Dawson-Hughes B.
Protein intake and calcium absorption: potential role of the calcium sensor
receptor. In: Burckhardt P, Heaney R,
Dawson-Hughes B,
editors. Proceedings of the International Symposium on Nutritional Aspects of
Osteoporosis, May 4–6, 2006. Lausanne, Switzerland. Elsevier; 2007:217–227.
309. Hunt JR, Johnson
LK, Fariba Roughead ZK. Dietary protein and calcium interact to influence
calcium retention: a controlled feeding study. Am J Clin Nutr.
2009;89:1357–1365.
310. Sebastian A.
Dietary protein content and the diet’s net acid load: opposing effects on bone
health. Am J Clin Nutr. 2005;82(5):921–922.
311.
Westerterp-Plantenga MS, Nieuwenhuizen A, Tome D, et al. Dietary protein,
weight loss, and weight maintenance. Annu Rev Nutr. 2009;29: 21–41.
312. Hodgson JM, Burke
V, Beilin LJ, Puddey IB. Partial substitution of carbohydrate intake with
protein intake from lean red meat lowers blood pressure in hypertensive
persons. Am J Clin Nutr. 2006;83(4): 780–787.
313. Skov AR, Toubro
S, Bulow J, et al. Changes in renal function during weight loss induced by high
vs low-protein low-fat diets in overweight subjects. Int J Obes Relat Metab Disord.
1999;23(11):1170–1177.
314. Wrone EM,
Carnethon MR, Palaniappan L, Fortmann SP. Association of dietary protein intake
and microalbuminuria in healthy adults: Third National Health and Nutrition
Examination Survey. Am J Kidney Dis. 2003;41(3):580–587.
315. Knight EL,
Stampfer MJ, Hankinson SE, et al. The impact of protein intake on renal
function decline in women with normal renal function or mild renal
insufficiency. Ann Intern Med. 2003;138: 460–467.
316. Martin WF,
Armstrong LE, Rodriguez NR. Dietary protein intake and renal function. Nutr
Metab (Lond). 2005;2:25.
317. Westman EC,
Feinman RD, Mavropoulos JC, et al. Low-carbohydrate nutrition and metabolism.
Am J Clin Nutr. 2007;86(2):276–284.
318. Volek JS,
Fernandez ML, Feinman RD, et al. Dietary carbohydrate restriction induces a
unique metabolic state positively affecting atherogenic dyslipidemia, fatty
acid partitioning, and metabolic syndrome. Prog Lipid Res. 2008;47:307–318.
319. Simopoulos AP.
The Mediterranean diets: what is so special about the diet of Greece? The
scientific evidence. J Nutr. 2001;131:3065S–3073S.
320. Mensink RP, Zock
PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on
the ratio of serum total to HDL cholesterol and on serum lipids and
apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr.
2003;77(5):1146–1155.
321. Carluccio MA,
Massaro M, Scoditti E, De Caterina R. Vasculoprotective potential of olive oil
components. Mol Nutr Food Res. 2007;51(10):1225–1234.
322. Cicerale S, Lucas
L, Keast R. Biological activities of phenolic compounds present in virgin olive
oil. Int J Mol Sci. 2010;11(2): 458–479.
323. Clarke R, Frost
C, Collins R, et al. Dietary lipids and blood cholesterol: quantitative
meta-analysis of metabolic ward studies. BMJ. 1997;314: 112–117.
324. Siri-Tarino PW,
Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart
disease: modulation by replacement nutrients. Curr Atheroscler Rep.
2010;12(6):384–390.
325. Siri-Tarino PW,
Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating
the association of saturated fat with cardiovascular disease. Am J Clin Nutr.
2010;91(3):535–546.
326. Jakobsen MU,
Dethlefsen C, Joensen AM, et al. Intake of carbohydrates compared with intake
of saturated fatty acids and risk of myocardial infarction: importance of the
glycemic index. Am J Clin Nutr. 2010;91(6):1764–1768.
327. Stanhope JM,
Sampson VM, Prior IA. The Tokelau Island Migrant Study: serum lipid
concentration in two environments. J Chronic Dis. 1981;34(2–3):45–55.
328. Forsythe CE,
Phinney SD, Fernandez ML, et al. Comparison of low fat and low carbohydrate
diets on circulating fatty acid composition and markers of inflammation.
Lipids. 2008 Jan;43(1):65–77.
329. Assunçăo ML,
Ferreira HS, dos Santos AF, et al. Effects of dietary coconut oil on the
biochemical and anthropometric profiles of women presenting abdominal obesity.
Lipids. 2009;44(7):593–601.
330. Nevin KG,
Rajamohan T. Beneficial effects of virgin coconut oil on lipid parameters and
in vitro LDL oxidation. Clin Biochem. 2004;37(9):830–835.
331. Müller H, Lindman
AS, Blomfeldt A, et al. A diet rich in coconut oil reduces diurnal postprandial
variations in circulating tissue plasminogen activator antigen and fasting
lipoprotein (a) compared with a diet rich in unsaturated fat in women. J Nutr.
2003;133(11):3422–3427.
332. Pella D, Dubnov
G, Singh RB, et al. Effects of an Indo-Mediterranean diet on the
omega-6/omega-3 ratio in patients at high risk of coronary artery disease: the
Indian paradox. World Rev Nutr Diet. 2003;92: 74–80.
333. Dubnov G, Berry
EM. Omega-6/omega-3 fatty acid ratio: the Israeli paradox. World Rev Nutr Diet.
2003;92:81–91.
334. Ramsden CE,
Hibbeln JR, Lands WE. Letter to the Editor re: linoleic acid and coronary heart
disease. Prostaglandins Leukot Essent Fatty Acids. 2009;80(1):77.
335. Harris WS. The
omega-3 index: clinical utility for therapeutic intervention. Curr Cardiol Rep.
2010;12(6):503–508.
336. Calder PC. The
2008 ESPEN Sir David Cuthbertson Lecture. Fatty acids and inflammation: from
the membrane to the nucleus and from the laboratory bench to the clinic. Clin
Nutr. 2010;29(1): 5–12.
337. Ramsden CE,
Hibbeln JR, Majchrzak SF, Davis JM. N-6 fatty acidspecific and mixed polyunsaturate
dietary interventions have different effects on CHD risk: a meta-analysis of
randomised controlled trials. Br J Nutr. 2010;104(11):1586–1600.
338. De Lorgeril M,
Renaud S, Mamelle N, et al. Mediterranean alphalinolenic acid-rich diet in
secondary prevention of coronary heart disease. Lancet.
1994;343(8911):1454–1459.
339. Muskiet FAJ.
Pathophysiology and evolutionary aspects of dietary fats and long-chain
polyunsaturated fatty acids across the life cycle. In: Montmayeur JP, le Coutre
J, editors. Fat Detection: Taste, Texture, and Post Ingestive Effects. Boca
Raton, FL: CRC Press; 2010: 19–79.
340. Serhan CN. Novel
lipid mediators and resolution mechanisms in acute inflammation: to resolve or
not? Am J Pathol. 2010;177(4):1576–15791.
341. Lindeberg S,
Jönsson T, Granfeldt Y, et al. A Palaeolithic diet improves glucose tolerance
more than a Mediterranean-like diet in individuals with ischaemic heart
disease. Diabetologia. 2007;50(9): 1795–1807.
342. Jönsson T,
Granfeldt Y, Ahrén B, et al. Beneficial effects of a Paleolithic diet on
cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot
study. Cardiovasc Diabetol. 2009;8:35.
343. Jönsson T, Ahrén
B, Pacini G, et al. A Paleolithic diet confers higher insulin sensitivity,
lower C-reactive protein and lower blood pressure than a cereal-based diet in
domestic pigs. Nutr Metab (Lond). 2016:329.