Recommended GLYCATION, Advanced glycation end-products, ROS (13)

Home | Reactive oxygen and nitrogen species (ROS & RNS) | Mitochondria as source of ROS | Measuring reactive species--FULL article | Mailard reaction and cross liking of collagen | Polyol Pathway makes fructose | Receptors for AGE (RAGE)

Reactive oxygen and nitrogen species (ROS & RNS)

https://www.nature.com/articles/nature04634 12 April 2006 Nicholas Houstis, Evan D. Rosen et al. 

Reactive oxygen species have a causal role in multiple forms of insulin resistance

ABSTRACT: 

Insulin resistance is a cardinal feature of type 2 diabetes and is characteristic of a wide range of other clinical and experimental settings. Little is known about why insulin resistance occurs in so many contexts. Do the various insults that trigger insulin resistance act through a common mechanism? Or, as has been suggested1, do they use distinct cellular pathways? Here we report a genomic analysis of two cellular models of insulin resistance, one induced by treatment with the cytokine tumour-necrosis factor-α and the other with the glucocorticoid dexamethasone. Gene expression analysis suggests that reactive oxygen species (ROS) levels are increased in both models, and we confirmed this through measures of cellular redox state. ROS have previously been proposed to be involved in insulin resistance, although evidence for a causal role has been scant. We tested this hypothesis in cell culture using six treatments designed to alter ROS levels, including two small molecules and four transgenes; all ameliorated insulin resistance to varying degrees. One of these treatments was tested in obese, insulin-resistant mice and was shown to improve insulin sensitivity and glucose homeostasis. Together, our findings suggest that increased ROS levels are an important trigger for insulin resistance in numerous settings.

 

 

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2002.tb02084.x

Aging and the Role of Reactive Nitrogen Species

BARRY DREW   CHRISTIAAN LEEUWENBURGH   24 January 2006

Abstract

The role of reactive oxygen species and its effects on aging has received considerable attention in the past 47 years since Dr. Denham Harman first proposed the “free radical theory of aging.” Though not completely understood due to the incalculable number of pathways involved, the number of manuscripts that facilitate the understanding of the underlying effects of reactive radical species on the oxidative stress on lipids, proteins, and DNA and its contribution to the aging process increases nearly exponentially each year. More recently, the role of reactive nitrogen species, such as nitric oxide and its by‐products—nitrate (NO3), nitrite (NO2), peroxynitrite (ONOO), and 3‐nitrotyrosine—have been shown to have a direct role in cellular signaling, vasodilation, and immune response. Nitric oxide is produced within cells by the actions of a group of enzymes called nitric oxide synthases. Presently, there are three distinct isoforms of nitric oxide synthase: neuronal (nNOS or NOS‐1), inducible (iNOS or NOS‐2), and endothelial (eNOS or NOS‐3), and several subtypes. While nitric oxide (NO) is a relative unreactive radical, it is able to form other reactive intermediates, which could have an effect on protein function and on the function of the entire organism. These reactive intermediates can trigger nitrosative damage on biomolecules, which in turn may lead to age‐related diseases due to structural alteration of proteins, inhibition of enzymatic activity, and interferences of the regulatory function. This paper will critically review the evidence of nitration and the important role it plays with aging. Furthermore, it will summarize the physiological role of nitration as well as the mechanisms leading to proteolytic degradation of nitrated proteins within biological tissues.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 

Article on which lists the complexity of systems for reactive chemicals 

http://publications.aston.ac.uk/135/  Malcolm J. Jackson,  Jacoba Flier, M Ruan Elliot, et al,   FEB 2002              

Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function

Abstract

Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs

Dr. Relman another former editor in chief of the NEJM said this in 2002
“The medical profession is being bought by the pharmaceutical industry, not only in terms of the practice of medicine, but also in terms of teaching and research. The academic institutions of this country are allowing themselves to be the paid agents of the pharmaceutical industry. I think it’s disgraceful”