References
1. Halliwell B, Gutteridge JMC,
editors. Free Radicals in Biology and
Medicine. 3rd. Oxford Univ Press;
New York: 1999.
2. D'Autreaux B, Toledano MB. ROS
as signaling molecules: mechanisms that generate specificity in ROS
homeostasis. Nat Rev
Mol Cell Biol. 2006;8:813–824. [PubMed]
3. Winterbourn CC. Reconciling the
chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–286. [PubMed]
4. Murphy MP, Holmgren A, Larsson
NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornally PJ, Partridge L,
Gems D, Nyström T, Belousov V, Schumacker PT, Winterbourn CC. Unraveling the
biological roles of reactive oxygen species. Cell Metab. 2011;13:361–364. [PMC free article] [PubMed]
5. Tampo Y, Kotamraju S, Chitambar
CR, Kalivendi SV, Keszler A, Joseph J, Kalyanaraman B. Oxidative stress-induced
iron signaling is responsible for peroxide-dependent oxidation of
dichlorodihydrofluorescein in endothelial cells: role of transferrin
receptor-dependent iron uptake in apoptosis. Circ Res. 2003;92:56–63.[PubMed]
6. Kotamraju S, Tampo Y, Keszler
A, Chitambar CR, Joseph J, Haas AL, Kalyanaraman B. Nitric oxide inhibits H2O2-induced
transferrin receptor-dependent apoptosis in endothelial cells: role of
ubiquitin–proteasome pathway. Proc
Natl Acad Sci U S A. 2003;100:10653–10658. [PMC
free article] [PubMed]
7. Kotamraju S, Kalivendi SV,
Konorev E, Chitambar CR, Joseph J, Kalyanaraman B. Oxidant-induced iron
signaling in doxorubicin-mediated apoptosis. Methods Enzymol. 2004;378:362–382. [PubMed]
8. Karlsson M, Kurz T, Brunk UT,
Nilsson SE, Frennesson CI. What does the commonly used DCF test for oxidative
stress really show? Biochem J. 2010;428:183–190.[PubMed]
9. Zmijewski JW, Moellering DR, Le
Goffe C, Landar A, Ramachandran A, Darley-Usmar VM. Oxidized LDL induces
mitochondrially associated reactive oxygen/nitrogen species formation in
endothelial cells. Am J Physiol Heart Circ Physiol. 2005;289:H852–H861. [PubMed]
10. Lee S, Gharavi NM, Honda H,
Chang I, Kim B, Jen N, Li R, Zimman A, Berliner JA. A role for NADPH oxidase 4
in the activation of vascular endothelial cells by oxidized
phospholipids. Free Radic Biol Med. 2009;47:145–151. [PMC free article] [PubMed]
11. Burkitt MJ, Wardman P.
Cytochrome c is a potent catalyst of dichlorofluorescein oxidation:
implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun. 2001;282:329–333. [PubMed]
12. Bonini MG, Rota C, Tomasi A,
Mason RP. The oxidation of 2′,7′-dichlorofluorescein to reactive oxygen
species: a self-fulfilling prophesy? Free Radic Biol Med. 2006;40:968–975. [PubMed]
13. Hempel SL, Buettner
GR, O'Malley YQ, Wessels
DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting
intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein
diacetate, 5 (and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and
dihydrorhodamine. Free Radic Biol Med. 1999;27:146–159. [PubMed]
14. Folkes LK, Patel KB, Wardman P,
Wrona M. Kinetics of reaction of nitrogen dioxide with dihydrorhodamine and the
reaction of the dihydrorhodamine radical with oxygen: implications for
quantifying peroxynitrite formation in cells. Arch Biochem Biophys. 2009;484:122–126. [PubMed]
15. Qian SY, Buettner GR. Iron and
dioxygen chemistry is an important route to initiation of biological and free
radical oxidations: an electron paramagnetic resonance spin trapping
study. Free Radic Biol Med. 1999;26:1447–1456. [PubMed]
16. LeBel CP, Ischiropoulos H,
Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of
reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–231. [PubMed]
17. Kooy NW, Royall JA,
Ischiropoulos H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radic Res. 1997;27:245–254. [PubMed]
18. Sikora A, Zielonka J, Lopez M,
Joseph J, Kalyanaraman B. Direct oxidation of boronates by peroxynitrite:
mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic Biol Med. 2009;47:1401–1407. [PMC free article] [PubMed]
19. Miller EW, Abers AE, Pralle A,
Isacoff EY, Chang CJ. Boronate-based fluorescent probes for imaging cellular
hydrogen peroxide. J Am Chem Soc. 2005;127:16652–16659. [PMC free article] [PubMed]
20. Dickenson BC, Huynh C, Chang
CJ. A palette of fluorescent probes with varying emission colors for imaging
hydrogen peroxide signaling in living cells. J Am Chem Soc. 2010;132:5906–5915. [PMC free article] [PubMed]
21. Cochemé HM, Quin C, McQuaker
SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James
AM, Porteous CM, Smith RA, Saeed S, Carré JE, Singer M, Gems D, Hartley RC,
Partridge L, Murphy MP. Measurement of H2O2 within
living Drosophila during aging using a ratiometric mass spectrometry probe
targeted to the mitochondrial matrix. Cell
Metab. 2011;13:340–350. [PubMed]
tochondrial matrix. Cell Metab. 2011;13:340–350. [PubMed]
22. Zielonka J, Sikora A, Joseph J,
Kalyanaraman B. Peroxynitrite is the major species formed from different flux
ratios of co-generated nitric oxide and superoxide. J Biol Chem. 2010;285:14210–14216. [PMC free article] [PubMed]
23. Mishin V, Gray JP, Heck DE,
Laskin DL, Laskin JD. Application of the Amplex red/horseradish peroxidase
assay to measure hydrogen peroxide generation by recombinant microsomal
enzymes. Free Radic Biol Med. 2010;48:1485–1491.[PMC free article] [PubMed]
24. Zhao B, Ranguelova K, Jian JJ,
Zielonka J, Kalyanaraman B, Mason R. Studies on the photosensitized reduction
of resorufin and implications for the detection of oxidative stress with Amplex
red. Free Radic Biol Med. 2010;49(Suppl. 1):S105–S106.
25. Belousov VV, Fradkov AF,
Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S. Genetically
encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 2006;3:281–286. [PubMed]
26. Zhao H, Kalivendi S, Zhang H,
Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B. Superoxide reacts
with hydroethidine but forms a fluorescent product that is distinctly different
from ethidium: potential implications in intracellular fluorescence detection
of superoxide. Free Radic Biol Med. 2003;34:1359–1368. [PubMed]
27. Zhao H, Joseph J, Fales HM,
Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B. Detection and
characterization of the product of hydroethidine and intracellular superoxide
by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A. 2005;102:5727–5732. [PMC free article] [PubMed]
28. Dikalov S, Grienling KK,
Harrison DG. Measurement of reactive oxygen species in cardiovascular
studies. Hypertension. 2007;49:717–727. [PMC free article] [PubMed]
29. Zielonka J, Kalyanaraman B.
Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator
of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48:983–1001. [PMC free article] [PubMed]
30. Zielonka J, Vasquez-Vivar J,
Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique
marker product of superoxide and hydroethidine. Nat Protoc. 2008;3:8–21. [PubMed]
tochondrial matrix. Cell Metab. 2011;13:340–350. [PubMed]
22. Zielonka J, Sikora A, Joseph J,
Kalyanaraman B. Peroxynitrite is the major species formed from different flux
ratios of co-generated nitric oxide and superoxide. J Biol Chem. 2010;285:14210–14216. [PMC free article] [PubMed]
23. Mishin V, Gray JP, Heck DE,
Laskin DL, Laskin JD. Application of the Amplex red/horseradish peroxidase
assay to measure hydrogen peroxide generation by recombinant microsomal
enzymes. Free Radic Biol Med. 2010;48:1485–1491.[PMC free article] [PubMed]
24. Zhao B, Ranguelova K, Jian JJ,
Zielonka J, Kalyanaraman B, Mason R. Studies on the photosensitized reduction
of resorufin and implications for the detection of oxidative stress with Amplex
red. Free Radic Biol Med. 2010;49(Suppl. 1):S105–S106.
25. Belousov VV, Fradkov AF,
Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S. Genetically
encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 2006;3:281–286. [PubMed]
26. Zhao H, Kalivendi S, Zhang H,
Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B. Superoxide reacts
with hydroethidine but forms a fluorescent product that is distinctly different
from ethidium: potential implications in intracellular fluorescence detection
of superoxide. Free Radic Biol Med. 2003;34:1359–1368. [PubMed]
27. Zhao H, Joseph J, Fales HM,
Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B. Detection and
characterization of the product of hydroethidine and intracellular superoxide
by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A. 2005;102:5727–5732. [PMC free article] [PubMed]
28. Dikalov S, Grienling KK,
Harrison DG. Measurement of reactive oxygen species in cardiovascular
studies. Hypertension. 2007;49:717–727. [PMC free article] [PubMed]
29. Zielonka J, Kalyanaraman B.
Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator
of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48:983–1001. [PMC free article] [PubMed]
30. Zielonka J, Vasquez-Vivar J,
Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique
marker product of superoxide and hydroethidine. Nat Protoc. 2008;3:8–21. [PubMed]
31. Robinson KM, Janes MS, Beckman
JS. The selective detection of mitochondrial superoxide by live cell
imaging. Nat Protoc. 2008;3:941–947. [PubMed]
32. Zielonka J, Srinivasan S, Hardy
M, Ouari O, Lopez M, Vasquez-Vivar J, Avadhani NG, Kalyanaraman B. Cytochrome
c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria:
identification of homo- and heterodimers. Free Radic Biol Med. 2008;44:835–846. [PMC free article] [PubMed]
33. Wardman P. Methods to measure
the reactivity of per toward reduced fluoresceins and rhodamines. Methods Enzymol. 2008;441:261–282.[PubMed]
34. Jourd'heuil D, Jourd'heuil FL,
Kutchukian PS, Musah RA, Wink DA, Grisham MB. Reaction of superoxide and nitric
oxide with peroxynitrite. J Biol Chem. 2001;276:28799–28805. [PubMed]
35. Zielonka J, Kalyanaraman B.
“ROS-generating mitochondrial DNA mutations can regulate tumor cell
metastasis”—a critical commentary. Free Radic Biol Med. 2008;45:1217–1219. [PMC free article] [PubMed]
36. Bass DA, Parce JW, Dechatelet
LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product
formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983;130:1910–1917. [PubMed]
37. Kettle AJ, Carr AC, Winterbourn
CC. Assays using horseradish peroxidase and phenolic substrates require
superoxide dismutase for accurate determination of hydrogen peroxide production
by neutrophils. Free Radic Biol Med. 1994;17:161–164.[PubMed]